Center for Technology and Innovation Sculpture

Binghamton University Mechanical Engineering Department

Justin Chalfen | Pranshu Babber | Anna Chiles | Caitlin Bertolini Professor Mir Razavi | Arthur Law May 6, 2020

BINGHAMTON UNIVERSITY

STATE UNIVERSITY OF NEW YORK

Agenda

Introduction Scope **Fall Progress Internal Lighting Design External Lighting Design Environmental Analysis Structural Analysis Manufacturability Cost Analysis Next Steps**

Innovation TECH VORKS! Past, Present, &

Scope

- Create a feasibility analysis for a sculpture on the roof top that:
 - Symbolizes the mission of TechWorks!
 - Piques the public to ask "What's That?"
 - Act as a visual guide to where we are
 - "Questions lead to good ideas"
- Fall semester focus on visibility
- Spring focused on structural analysis

- Initial conceptual design
 - 4 individual designs compared
 - 1 final conceptual design created
- Visibility Analysis
 - Line of Sight
 - Resolvability

Final sculpture height and dimensions

Distance From Sculpture (miles)	Sculpture Height (feet)	Base Thickness (feet)	Question Mark Thickness (feet)	Sculpture Width (feet)
¼ mile	23.1	3.78	.94	13.96
½ mile	47.1	7.71	1.92	28.46
³₄ mile	70.4	11.49	2.87	42.43
1 mile	94.4	15.42	3.85	56.93

Internal vs. External Lighting Design

 Goal of the semester is to analyze these two systems of lighting and determine if they are structurally viable and able to project enough illumination to be seen at critical points and far distances

Internal vs External Lighting Continued

- External design has no change to the initial model besides hollowing to reduce weight
 - Analysis boils down to can it support itself
- Early research showed that internal lighting provides better visibility than external for signs

 Focus of change in design is in the internal lighting design

 Entire Sculpture needs to be made hollow and have holes to allow wiring to pass through and electronics to be installed

- Chamber is created made out of acrylic plates to house lighting equipment and allow for light transmittance.
- Bolted onto aluminum bars at each corner for structural stability

- Overlap the acrylic plates onto the aluminum bar and bolt them for ease of installation
- Created a top support to lessen the effect of deformation due to wind

- Stainless steel screws that are resistant to corrosion to secure acrylic plates to the aluminum bar
- Washers used to increase bolting area to prevent stress cracking

- 5 hollow square question marks
 - Curved aluminum section
 - Stainless steel support pole and base
 - Top support structure
- Flat surfaces for mounting lights
- Hollow cross-section for electronic components

External Lighting Design - Screw Base

- Aluminum shell and rings
- Stainless steel inner support
- Internal platform for electronics
- Access door with locking handle

External Lighting Design - Platform Base

- Stainless steel mesh panels
- Stainless steel beam supports
- Rests between I-Beams

Environmental Analysis - Conditionals

- Calculations for external lighting design
- Seismic loading is N/A

State	County	Min. Basic Wind Speed V (mph)	Max. Basic Wind Speed V (mph)	Min. Basic Wind Speed with Ice V _i (mph)	Max. Basic Wind Speed with Ice V _i (mph)	Min. Design Ice Thickness t _i (in.)	Max. Design Ice Thickness t _i (in.)	Design Frost Depth (in.)	Min. Ss	Max. Ss	Notes	
NY	ALBANY	90	90	40	40	0.75	0.75	60	0.25	0.28	2	
NY	ALLEGANY	90	90	40	40	0.75	0.75	60	0.18	0.27	2	
NY	BRONX	95	105	50	50	0.75	0.75	50	0.42	0.43	1	
NY	BROOME	90	90	40	40	0.75	0.75	50	0.18	0.20	2	
NY	CATTARAUGUS	90	90	40	40	0.75	0.75	60	0.17	0.27	2	
NY	CAYUGA	90	90	40	40	0.75	1.00	60	0.18	0.19	2	
								-				~

Environmental Analysis - Axial Loading

• Axial Loads:

- Weight of Structure: 1510 lbs
- Weight of Ice: 261 lbs
- Total Loading: 1761 lbs
- Axial Strength for each question mark:
 - 6061 Aluminum Alloy
 - YS = 35 ksi
 - Design Strength = 4387 lbs
- Factor of Safety: 2.48
- Minimum required Factor of Safety: 1.5

Environmental Analysis - Shear Loading

• Shear Loads:

- Wind Loading (No Ice): 3375 lbs
- Wind Loading (With Ice): 3414 lbs
- Resonance: 178 lbs
- Total Loading: 3591 lbs
- Shear Strength for each question mark:
 - 6061 Aluminum Alloy
 - YS = 35 ksi
 - Strength = 8427 lbs
- Factor of Safety: 2.35
- Minimum required Factor of Safety: 1.5

Environmental Analysis - Natural Frequency

- Modal Frequency with no external forces:
- 5 iterations values converge
- 30 Hz = 30 gusts of wind per second

	Mode	Frequency [Hz]
1	1.	29.082
2	2.	29.123
3	3.	29.203
4	4.	29.232
5	5.	29.289

Environmental Analysis - Natural Frequency

- Natural Frequency: 30 Hz
 - Amplitude spikes at 30 Hz
- Deformation: 2.6" max
- Tolerance is 5% of total height
 - 9 inches
- F = Asin(wt)
 - Max Amplitude is .031"

No External Environmental Forces (gravity only)

- Constraints:
 - Fixed

Movement restricted

Additional Constraints

Bonded connections

Deformation Analysis

- Total Deformation: 0.008 in (0.205mm)
- Deformation is 0.0044% of the sculpture height

Stress Analysis

- Max Stress: 1208.16 psi (8.33 MPa)
- Factor of Safety (FOS): 28.97

A: Static Structural

Equivalent Stress Type: Equivalent (von-Mises) Stress Unit: Pa Time: 1 5/6/2020 9:05 AM

8.3336e6 Max 7.4077e6 6.4817e6 5.5557e6 4.6298e6 3.7038e6 2.7779e6 1.8519e6 9.2596e5 0.021821 Min

Stress Convergence Analysis

Aluminum 6061				
Elements	Max Stress (psi)			
9877	358.24			
39826	584.5			
121111	758.55			
410122	952.89			
1513610	1208.16			

Results Summary

Deformation Analysis				
Height of	Max. Allowable Tested Sculpture			
Sculpture (ft)	Deformation (in)	Deformation (in)	Pass/Fall	
15	9	0.008	PASS	

Stress Analysis				
Yield Strength (psi)	Tested Max. Stress (psi)	Required Minimum FOS	Calculated FOS	Pass/Fail
35000	1208.16	1.5	28.97	PASS

Including Environmental Loads

- Constraints:
 - Fixed Support

Bonded Connections

- Calculating Shear Pressure (wind and ice load)
 - All loads need to be applied as pressures acting on the question mark
 - Pressure = Force/Area
 - Force = 3414 lbs
 - Area = Cross Sectional Area of one Question mark
 - Area = 1,307.81 sq. in.
 - Pressure = 2.61 psi

Deformation Analysis

- Total Deformation: 1.31 in
- Deformation is 0.73% of the sculpture height

Stress Analysis

Max Stress: 21716 psi

A: Static Structural

Equivalent Stress Type: Equivalent (von-Mises) Stress Unit: psi Time: 1 5/6/2020 5:19 PM

21716 Max 19303 16890 14477 12064 9651.5 7238.7 4825.9 2413 0.21181 Min

Aluminum 6061		
Yield Strength (psi)	35000	
Max Stress (psi)	21716	
FOS	1.61	

Error Plot

Recall: Max Stress location

Results Summary

Deformation Analysis				
Height of Sculpture (ft)	Max. Allowable Deformation (in)	Tested Sculpture Deformation (in)	Pass/Fail	
15	9	1.31	PASS	

Stress Analysis					
Yield Strength (psi)	Tested Max. Stress (psi)	Required Minimum FOS	Calculated FOS	Pass/Fail	
35000	21716	1.5	1.61	PASS	

Cost Analysis

Features	Price
ELD Question Marks	\$5,900.83
ILD Question Marks	\$3,119.19
Bases	\$6,677.57
Total	\$12,578.40/\$9,796.76

Cost Analysis - Additional Items

Labor Costs

- Welding, water jet, assembly
- Seneca Steel
- Empire Plastics
- Crowley Fabrication & Machining
- Specific Lighting Units
- Electrical/Computer Components

Summary

- 2 Potential Designs
 - Internal
 - External
 - Secured to roof via platform attached to screw base
- Environmental Analysis MATLAB
 - Wind Loading
 - Ice Loading
 - Seismic Load
 - Resonance
- Structural Analysis ANSYS
 - Major stress points are within tolerance
 - Verifies Environmental Analysis
- Both designs pass the industry standards

□ Art Law, Ryan Donovan, and the

TechWorks! team

Professor Razavi and Professor Murray

BINGHAMTON UNIVERSITY STATE UNIVERSITY OF NEW YORK